ICAR-Agricultural Technology Application Research Institute (ICAR-ATARI)

Action Plan 2023-24: Summary of Technical Activities

1. Name and address of KVK: Ariyalur KVK

ICAR- Krishi Vigyan Kendra (Hosted by CREED) Cholamadevi Post, Jayankondam (via), Udayarpalayam Taluk, Ariyalur District – 612 902 Tamil Nadu

Phone/Mobile:	9751280089
Fax:	
e-mail:	kvk.Ariyalur@icar.gov.in
Website:	www.kvkariyalur.org

2. District map with location of the KVK

GPS reading (from Google Maps) of the Entrance of KVK

11°8'11"N 79°24'17"E

District map with the location of KVK marked on it

3.1 Operational area/Cluster villages details

District/Taluk/ Block	Names of cluster Villages	Major crops & enterprises	Major problems identified in each crop/enterprise	Proposed interventio n*
Ariyalur/	Thirumalapadi	Paddy, Sugarcane,	Paddy	• OFT on
Thirumanur		Vegetables, Dairy,	Low yield	Assessme
		Goat & Poultry	(4600kg/ha)	nt of
			from existing	Paddy
			fine grain	varieties
			varieties under	for
			Navarai	Navarai

	 season. Non availability of high yielding varieties with high market demand. Brown Leaf 	season at Ariyalur district • Training • Method demonstra tion
	spot and sheath blight causes 28 % yield loss during Navarai season	
	 Sugarcane The yield loss caused by early shoot borer, mealy bug and pokkah boeng disease recorded up to 28% to complete yield loss. Low yield (55 tons/ha). Unable to perform pesticide application after 6 months 	 FLD on Demonstr ation on managem ent of early shoot borer in Sugarcane Training Method demonstr ation Field day
	 Sugarcane Farmers practicing burning of sugarcane trashes and other agriculture waste in situ that affects soil micro flora Poor recycling of organic resources Reduction in germination and yield loss to the tune of 10 -15% in the ratoon crop due to burning of trashes Air pollution 	 OFT on Assessment of composting of Sugarcane trash using different microbial decompos ers towards Climate Smart Agriculture Training Method demonstr ation

			and leads to	
Udayarpalayam /T.Palur	Parukkal	Groundnut, Paddy, Blackgram, Sesame, Vegetables, Dairy, goat & Poultry	 Groundnut Reduced yield due to tikka leaf spot (38%) & root rot (14%) Cultivation of low yield (1950kg/ha) bunch type varieties like GJG 3 & local under irrigated condition 	 OFT on Assessment of Groundnut varieties for Rabi season under irrigated condition at Ariyalur district Training Method demo
Udayarpalayam / Jayankondam	Melanikuzhi	Groundnut, Drumstick, Blackgram, Vegetable, Dairy, goat & Poultry	 Blackgram MYMV causes yield loss up to 35 % in existing varieties like T9 and ADT varieties Low yield in the existing variety (ADT 5 & VBN 6) about 6.1 q/ha against potential yield of 8.5 q/ha Lack of synchronized maturity in ADT 5 	 OFT on Assessment of Blackgram varieties under garden land condition at Ariyalur District Training Method demonstra tion
Udayarpalayam /T.Palur, Jayankondam, Thirumanur	Sripuranthan, Silal & Thirumanur	Paddy, Cotton, Sesame, Dairy, Goat & Poultry	 Paddy Low yield (2600kg/ ha) due to less adoption of complete organic practices in traditional paddy varieties. Lodging character of Karuppu kavuni tend to harvesting difficulties 	 OFT on Assessmen t of organic nutrient management techniques in traditional rice variety - Karuppu Kavuni Training Method demonstra tion

Udayarpalayam	Karaikuruchi	Paddy, Groundnut,	Chilli	OFT on
/T.Palur		Blackgram, Brinjal,	• Leaf curl	Assessment
		Chilli, Dairy, Goat	disease Field-	on
		& Poultry	spread occurs	of chilli
			through	loof ourl
			whitefly, an	discusso
			insect vector	• Training
			(Bemisia	TrainingMathod
			tabaci). This	• Method
			disease	tion
			increases with	• OFT on
			increases in	• OF I OII Assessment
			temperature	of foliar
			and relative	nutrition
			humidity.	for getting
			Reduces yield	higher
			upto 30-40%	vield in
			due to no	chilli
			flower and fruit	(green
			formation	purpose)
			Iormation Depented	• Training
			• Repeated	• Method
			application of	demonstra
			insecticides	tion
			develops	
			resistance in	
			insects	
			Flower drop	
			(42%) & poor	
			fruit set and	
			low yield	
			(28%) due to	
			nutrient	
			deficiency.	
		Vegetables	Vegetables	FLD on
		-	Farmers cultivates	Demonstr
			vegetables like	ation on
			Brinjal, Bhendi,	Domestic
			Cluster bean,	Solar
			Chilli and have the	Dryer for
			practice of drying	drying
			marketable surplus	domestic
			and pest affected	agricultural
			vegetables as a	products
			value addition	• Training
			practice.	• Iviethod
			Prolonged Sun	tion
			drying results	uon Field dev
			drying and black	- Field day
			colour	
			the products	
			results in loss	
			price	
1			price.	

Udayarpalayam	Keelakudikadu	Paddy,Sesame,	Cattle	• OFT on
/T.Palur		Blackgram, Dairy,	• Outbreak of	Assessment
		Goat & Poultry	LSD last year	of lumpy
			(2020) led to	skin
			severe	management
			economical loss	practices
			for calle	in cattle
			• Proper	• Training
			vaccination or	• Method
			timely	demonstra
			vaccination not	tion
			done	
			• Severe mortality	
			in calves and	
			morbidity in	
			adult cattle	
			Paddy	• FLD on
			Lodging of crop	Demonstr
			at harvest stage	ation of
			and flood	Non – lodging
			• Low yield with	naddy
			existing variety	variety
			CR 1009	CO 56 for
			(5.1t/ha) and	samba
			BPT-5204 (4.8	season
			t/ha.)	• Training
			 Incidence of 	• Method
			bacterial leaf	demonstra
			blight (8 %),	tion
			leaf spot (12%),	• Field day
			false smut (11	
			%) and stem boror (10%)	
				• FLD on
				Demonstr
				ation on
				Slot
				modificati
				ons in
				Paddy
				drum
				seeder for
				wet
				seeded
				KICe • Training
				 Training Method
				demonstra
				tion
				Field dav
				aug

Ariyalur/ Thirumanur	Sembiyakudi	Paddy, Sugarcane, Sesame, cotton, Dairy, Goat & Poultry	 Paddy Cultivating of low yield (5600kg/ha) existing paddy varieties like ADT 37, ADT 39 and ADT 45 etc., Heavy incidence of Leaf folder and sheath rot causes 30 % yield loss during Thaladi season 	 FLD on Demonstr ation of paddy variety ADT 58 for Thaladi season Training Method demonstra tion Field day
Ariyalur/ Ariyalur	Ootakovil	Sorghum, Cotton, Vegetables, Dairy, goat & Poultry	 Sorghum Cultivating low yield (860kg/ha) existing local cowpea varieties Cultivating of Single purpose sorghum only for grain purpose. 	 FLD on Demonstr ation of Dual purpose sorghum CO 32. Training Method demonstra tion Field day
Udayarpalayam /Suthamalli	Suthamalli	Maize, Groundnut, Sesame, Cashewnut, Paddy, Dairy, goat & Poultry	Maize The damage intensity of Fall armyworm, <i>Spodoptera</i> <i>frugiperda</i> is high in the kharif season with the yield loss of 34%. Low yield (15.30 q/ha). Use of chemical pesticides alone ineffective.	 FLD on Demonstr ation on Refined IPM Module for Fall Army Worm in Maize Training Method demonstra tion Field day
			Groundnut The yield loss caused by <i>Sclerotium rolfsii</i> recorded up to 23%. Low yield (2.5 tons/ha). Use of chemical pesticides alone is ineffective.	 FLD on Demonstra tion on Stem and Pod rot management in Groundnut Training Method demonstrat ion Field day

3.2. Adopted villages

District/Taluk / Block	Name of cluster villages	Major crops & Enterprises	Major problems identified in each crop/enterprise	Proposed type of interventions*
Andimadam/ Andimadam	Kuvagam	Cashewnut, Blackgram, Groundnut, Tuberose, Dairy, Goat & Poultry	Tuberose • The root knot nematode - Meloidogyne incognita is one of the serious concerns for commercial tuberose cultivation. Estimated yield loss unto 30–45%	OFT on Assessment on management of nematodes in Tuberose
	Athukuruchi	Cashewnut, Blackgram, Groundnut, Tuberose, Jasmine, Dairy, Goat & Poultry	Jasmine Less flowering during November to March months due to pruning of plants during the last week of November. Low yield and low income during the off season of flowering. 	OFT on Assessment of off season flowering in Jasmine through nutrient management.
			Jasmine Cultivation of low yielding varieties (4500kg/ha), less flower yield during winter season.	FLD on Demonstration on Winter Jasmine variety CO 1 for higher yield
Udayarpalayam/ T.Palur	Kodalikaruppur	Paddy, Cotton, Groundnut, Blackgram, Gourds, Dairy, Goat & Poultry	Gourds The melon fruit fly is one of the important pests in gourds which cause 30 to 50 percent yield loss depending on the season. The damaged vegetables have shortened growth & has low market rate	 OFT on Assessment of TNAU food baited traps for female fruit flies in gourds Training Method demonstration
			 Cotton The damage intensity caused by both pests and diseases leads to yield loss up to 35%. Low yield (3.5 q/ha). Use of chemical pesticides alone is ineffective. 	 FLD on Demonstration on Integrated Pest and Disease Management in Cotton Training Method demonstration

Udayarpalayam/ I T.Palur	Puliyankuzhi	Paddy, Cotton, Groundnut, Blackgram, Banana, Dairy, Goat & Poultry	 Banana Low yield with existing Poovan variety (21 t/ha.) Incidence of leaf spot disease (32%) and nematode incidence (12%) 	 FLD on Demonstration of banana variety CO 2 Training Method demonstration Field day
Sendurai/ I Sendurai	Keelamaligai	Cashewnut, Blackgram, Groundnut, Finger Millet, Dairy, goat, Poultry & Fish	 Finger Millet Reduction of area under millets due to low yield from local varieties and thereby less income than other crops Lack of suitable variety for the preparation of value- added products like health mix Cashewnut Low yield due to heavy weed infestation in Cashewnut gardens and low fertility of soil Cowpea Underutilization of land resources Lack of knowledge about intercrop and their varieties on short duration pulses crops Cultivating low yield (860kg/ha) existing local cowpea varieties Jack Low yield (80 fruits/tree) from existing local Jack fruit varieties Low quality fruits with gum and latex. Fruit rot disease incidence (43%) 	 OFT on Assessment of suitable Finger millet (Ragi) varieties (ATL 1 & KMR-630) for Value addition Training Method demonstration OFT on Assessment of cover crops for weed management in Cashewnut gardens Training Method demonstration FLD on Demonstration of VBN 4 cowpea as intercrop in Cashewnut under rainfed condition Training Method demonstration FILD on Demonstration of VBN 4 cowpea as intercrop in Cashewnut under rainfed condition Training Method demonstration Field day FLD on Demonstration of PLR 3 variety in Jack fruit Training Method demonstration Field day

			Fish	FLD on Pangas
			Fish rearing is the	Catfish
			upcoming venture and	(Pangasianodon
			IMC is the normally	hypophthalmus)
			grown varieties. But it	culture in Lined
			fetches minimum price	ponds
			in the market and	• Training
			thereby farmers lack	• Method
			interest now a days in	demonstration
			fish rearing.	 Field day
Sendurai/	Periyakuruchi	Cashewnut,	Tapioca	OFT on
Sendurai		Blackgram,	Existing Thailand	Assessment of
		Groundnut,	white and mulluvadi	the performance
		Finger Millet,	varieties are susceptible	of Tapioca
		Tapioca, Dairy,	to cassava mosaic virus	varieties for
		Goat, Poultry &	(48%), Mealy bug	higher yield
		Fish	incidence (32%) and	• Training
			Low yield (22t/ha).	• Method
				demonstration
Andimadam/	Ayyur	Cashewnut,	Pearlmillet	OFT on
Andimadam		Groundnut,	Farmers are cultivating	Assessment of
		Blackgram,	millet very rarely and	Quality
		Pearl millet,	they are selling millet	Parameters of
		Dairy, Goat &	products directly	Millet
		Poultry	without doing any	substituted
			value addition by	Flavoured Milk
			which they are getting	• Training
			low income.	• Method
				demonstration

3.3 DFI villages

District/Taluk/ Block	Name of cluster villages	Major crops & Enterprises	Major problems identified in each crop/enterprise	Proposed type of interventions
Sendurai/	Veerakan	Cashewnut,	Cashewnut	• OFT on
Sendurai		Blackgram,	Tea mosquito Bug is	Assessment on
		Groundnut,	one of the major	TNAU Nano
		Vegetables, Dairy,	devasting pests in	Bia against Tea
		Goat & Poultry	cashew plantation in	Mosquito Bug
			the Sendurai block.	(TMB) in
			The TMB occurs	Cashew
			severely during shoot	 Training
			forming, flower	Method
			blooming and nut	demonstration
			forming stages. Yield	
			losses by TMB have	
			observed around 40-	
			50 percent.	
			Goat	OFT on
			 Increased ecto- 	Assessment of
			parasite infestation	the performance
			• Indiscriminate use	of ecto-
			of chemical ecto-	parasiticide on

			parasiticide leading to chemical residues Poultry Breakage or contamination or spoilage of eggs to the tune of 25 – 30%	small ruminants Training Method demonstration FLD on Demonstration of Nano guard egg tray Training Method demonstration Field day
Udayarpalayam /T.Palur	Venmankondan	Paddy, Blackgram, Groundnut, Vegetables, Dairy, goat & Poultry	Dairy Dairy farmers selling milk directly to the milk stores where they get only Rs.28 – 35 according to SNF. They also have less knowledge on value addition. Through value addition in milk, they can reap high income	 FLD on Demonstration of Different Value Added Products from Milk Training Method demonstration Field day
			 Elephant Foot Yam Cultivation of low yielding varieties (21 t/ha). Incidence of Corm rot and leaf spot disease 	 FLD on Demonstration on Elephant foot yam variety CO 1 Training Method demonstration Field day
			Dairy Current feeding practices of dairy animals resulted in emission of 200 lit of methane per day per cow by belching that led to global warming	 FLD on Demonstration Harit Dhara as a feed supplement in dairy cattle to improve milk production Training Method demonstration Field day

*(OFT/ FLD/ Training/ Field day/ Method demonstrations/ Awareness camp)

4. Details of technological interventions

4.1 Technology Assessment (OFTs) 2023-24

S. No.	Crop/ enterprise	Title of intervention	Technological options TO-1 TO-2 FP	Source of Technology TO-1 TO-2	Status*	No. of trials (replications)	Total cost involved (Rs.)	Team members involved	No. of trials targeted in DFI village(s)	No. of trials targeted under SC-SP
1.	Paddy	Assessment of Paddy varieties for Navarai season at Ariyalur district	TO 1: CO 55 TO 2: RNR 15048 FP: ADT 43	TNAU, 2022 PJTSAU, 2021	New	5	11,840	SMS (Agronomy) SMS (Plant Protection)		5
2.	Groundnut	Assessment of Groundnut varieties for Rabi season under irrigated condition at Ariyalur district	TO 1: VRI 10 TO 2: TCGS 1694 FP: GJ 9	TNAU, 2022 ANGRAU, 2022	New	3	28,200	SMS (Agronomy) and SMS (Plant Protection)	3	
3.	Blackgram	Assessment of Blackgram varieties under garden land condition at	TO 1: LBG 884 TO 2: VBN 11 FP: VRI 8	ANGRAU, 2022 TNAU, 2022	New	5	6,200	SMS (Agronomy) and SMS (Plant Protection)	2	

		Ariyalur District								
4.	Paddy	Assessment of organic nutrient management techniques in traditional rice variety - Karuppu Kavuni	 TO1 Apply Azospirillum @ 2.5 kg/ha mixed with 25 kg FYM 30 min before sowing. Basal application of Vermicompost 1000 kg/ha. Basal application Neem seed cake @ 150 kg/ha, Top dressing @ 60 kg/ha on30 DAT; Groundnut cake @ 100 kg/ha, Top dressing @ 25 kg/ha on 30 DAT. Spray Sanjeevani mixture 1st and 2nd after weeding. Spray panchakavya 3 % during tillering and Booting stage. Soil application of 	TNAU, 2022	New	5	13750	SMS (Agronomy) and SMS (Plant Protection)	5	

		Amirthakaraisal				
		@ 25 lit/ha on 15				
		DAT.				
		TO2	IIRR,			
		 Seedling root 	Hyderabad-			
		dipping in	2020			
		Azospirillum and				
		Phosphorus				
		solubilizing				
		bacteria @ 600				
		g/ha seedlings.				
		• Soil application of				
		Vermicompost @				
		2 t/ha at last				
		ploughing.				
		 Azospirillum and 				
		Phosphorus				
		solubilizing				
		bacteria @ 2-3				
		kg/ha mixed with				
		25 kg				
		Vermicompost @				
		2 t/ha at just				
		before planting.				
		• Apply Azolla @				
		It/na /-10 DAP,				
		Blue green algae $@ 10 \text{ kg/hg} 10$				
		W 10 Kg/lla 10				
		ofter 3 weeks				
I		and J weeks.				
	1					

			FP:							
			Traditional method –							
			FYM application and							
			Panchagavya 3%							
			foliar spray at 30							
			days interval							
5	Tapioca	Assessment of the performance of Tapioca	TO 1: Sree Raksha TO2: Yethapur 2	CTCRI, 2017 TNAU, 2020	New	3	8,850	SMS (Horticulture) and SMS (Plant		
		varieties for	ED. Theiler device					Protection)		
6	Chilli	A seasoment	TO 1.	TNAL	Now	2	6 650	SMC	2	
6	Chilli	Assessment of foliar nutrition for getting higher yield in chilli (green purpose)	TO 1: Foliar spraying of TNAU WSF 19:19:19 @ 2% + liquid Multi MN @ 1% on 30 DAS 3 times at 10 days interval TO 2: Foliar spraying of IIHR Arka Vegetable special @ 0.5% on 40-45 DAS 3 times at 20 days interval FP: No foliar nutrition	TNAU, Coimbatore, 2021 ICAR IIHR, Bangalore, 2016	New	3	6,650	SMS (Horticulture) and SMS (Plant Protection)	2	
7	Jasmine	Assessment	TO 1:	IIHR,	New	5	6,625	SMS		
		of off season	Pruning during	Bangalore,				(Horticulture)		
		flowering in	second week of	2020				and SMS		
		Jasmine	August and					(Plant		
		through	application of					Protection)		

	nutrient	Meniquat chloride				
	managament	(500 nnm) 15 dava				
	management.	(500 ppiii) 15 days				
		after pruning induced				
		off season flowering				
		10 2:	TNAU,			
		Advancing the	2013			
		pruning operation				
		to September				
		instead of end of				
		November.				
		Foliar spray of				
		CCC @				
		1000PPM(8ml/lit)				
		15 days after				
		pruning				
		Foliar spray of 4%				
		Humic Acid +				
		19:19:19 on				
		21days after				
		pruning followed				
		by additional 3				
		times spray of the				
		same mixture at				
		15 days interval				
		➢ Soil application				
		of biofertilizers -				
		Azospirillum 2				
		kg/ha and				
		Phosphobacteria				
		@ 2 kg/ha				
		FP : Pruning in the				
		month of December				

8	Cashewnut	Assessment of cover crops for weed management in Cashewnut gardens	TO1: Cultivation of Muccuna as cover crop TO2: Cultivation of Horse gram as cover crop FP: Cultivation of	IIHR, Bangalore, 2020 TNAU, 2014	New	5	8,750	SMS (Horticulture) and SMS (Plant Protection)	5	
			Cashewnut as sole crop							
9	Chilli	Assessment on management of chilli leaf - curl disease	 TO 1: Soaking seeds in a solution containing 150 g Trisodium orthriphosphate per litre of water for 30 minutes inhibits seed - borne inoculum. Raise 2-3 rows of maize or sorghum as border crop. Flubendiamide 39.35% SC 2ml per litre of water TO 2: Soil-application of Furadon @ 1.5 Kg ai/ha at the time of sowing. Raise 2-3 rows of 	TNAU, 2019 IIHR, 2021	New	5	8,125	SMS (Plant Protection & Horticulture)	5	

			bajra as border crop. Spray Flubendiamide 39.35% SC 1.5ml/litre followed by neem seed kernel extract (2%)						
			FP : Nil						
10	Gourds	Assessment of TNAU food baited traps for female fruit flies in gourds	 TO 1: TNAU food baited female fruit fly trap @ 10 nos. /0.4 acre Cue-lure trap @ 10 nos. /0.4 acre Cue-lure trap @ 10 nos. /0.4 acre TO 2: Crush pumpkin 1 kg and add 100g Jaggery and 10 ml Thiamethoxam 25 WG and keep in the plot (5 places /acre). Erect cue-lure traps at 10 traps/acre to annihilate male flies Spray deltamethrin 1 ml/L+ 1 % Jaggery at fruit formation/ ripening stage. Repeat 2-3 times in cropping season. FP : Nil 	TNAU, 2019 IIVR, 2015	New	5	24,000	SMS (Plant Protection & Horticulture)	
11	Tuberose	Assessment	TO 1:	TNAU,	New	5	14,550	SMS (Plant	

		on	Neem cake (50 kg /	2022				Protection &		
		management	0.4 acre) and <i>Bacillus</i>					Horticulture)		
		of nematodes	thuringiensis (1 L/ 0.4							
		in Tuberose	acre). <i>Pseudomonas</i>							
			fluorescens (1 kg/ 0.4							
			acre) + Trichoderma							
			harzianum (1 kg/ 0.4							
			acre) + Paecilomvces							
			lilacinus (1 kg/ 0.4							
			acre) mixed with a ton							
			of organic matter and							
			apllied as basal							
			TO 2:	IIHR, 2020						
			Soil mixture or any							
			substrate prepared by							
			mixing Neem cake @							
			50kg + carbofuran or							
			phorate @ 5kg or							
			Neem cake @ 50kg +							
			Trichoderma							
			harzianum and							
			Pseudomonas							
			fluorescens each at							
			the rate of 2 kg /ton							
			FP:Nil							
12	Cashewnut	Assessment	TO 1:	TNAU,	New	5	20,100	SMS (Plant	5	
		on TNAU	TNAU Nano Bia	2022				Protection &		
		Nano Bia	(biopesticide) is					Horticulture)		
		against Tea	diluted @ 5ml/litre							
		Mosquito	and sprayed at the							
		Bug (TMB)	time of new shoot							
		in Cashew	emerging, blooming							

			and nut forming stage. TO 2: Neem oil @ 11itre/ 0.4 acre, <i>Beauveria</i> <i>bassiana</i> @ 1Kg/0.4 acre, Sex pheromone trap @ 5/0.4 acre. FP: Nil	IIHR, 2020					
13	Caprine	Assess the performance of ecto- parasiticide on small ruminants	TO 1: Nano Methicone lotion TO 2: Megatex Spray FP: Vasambu (Acorus calamus) + Cow's urine	TANUVAS, 2020 CIRG, 2020	New	5	25,000	SMS (AS) and Farm manager	 5
14	Bovine	Assessment of lumpy skin disease management practices in cattle	TO 1: EVM practices (Preparation 1: Ingredients: One dose contains:Betel leaves- 10 nos., black pepper- 10g, common salt- 10g, jaggery – as required; Preparation 2: Ingredients (for 2 doses), Garlic-2 pearls, coriander- 10g,cumin-10g, tulsi leaves–1 handful, bay leaves-10g, black	TANUVAS, 2022	New	5	12,500	SMS (AS) and Farm manager	5

			pepper-10g, betel leaves–5 nos., shallots-2 bulbs, turmeric powder-10g, chirata leaf powder- 30g, sweet basil-1 handful, neem leaves- 1 handful, Aegle marmalos (bel) leaves–1 handful, jaggery-100g TO 2: Chemotherapy (Antibiotics + Analgesia+ Wound treatment) FP: Cissus quadrangularis + Tamarind (internal); Neem oil + Turmeric (external)	NDDP, 2022						
15	Ragi	Assessment of suitable Finger millet (Ragi) varieties	TO 1: ATL-1 TO 2: KMR630	TNAU, 2021 ZARS, Mandya, 2020	New	3	12,000	SMS (Home Science), SMS (Agronomy) and SMS	3	
		(ATL 1 & KMR-630) for Value addition	FP: Nil					(Plant Protection)		
16	Millets	Assessment of Quality	TO 1: Millet Milk	TNAU, 2022	New	5	12,500	SMS (Home Science) and		5

		Parameters of Millet substituted Flavoured Milk	(Germinated millet, jaggery, cardamom) TO 2: Millet Milk (millet, skim milk powder, jaggery, cardamom) Carotene enriched FP: Selling millet as produce	TANUVAS, 2019				PA (Lab Tech)	
17	Sugarcane	Assessment of composting of Sugarcane trash using different microbial decomposers towards Climate Smart Agriculture	 TO 1: Composting using Pusa decomposer TO 2: Composting using TNAU bio mineralizer FP: Burning of sugarcane trashes after harvesting of canes in the field. Next day after burning they will irrigate the field for germination of ratoon crop 	ICAR- IARI,2020 TNAU,2017	New	5	2,900	SMS (Agriculture Extension), SMS (Agronomy)	
			Total			77	2,22,540		

4.2. Frontline Demonstrations (FLDs) 2023-24

S. N o.	Category/C rop or enterprise	Title	Prioritized problem	Technology demonstrated	Source of Technology	Status *	No. of Demo (replicati ons)	Area (ha)/ units	Total cost involved (Rs.)	Team members involved	No. of demos target ed in DFI villag e (s)	No. of demos target ed under SC- SP
1	Paddy	Demonstration of paddy variety ADT 58 for Thaladi season	 Cultivating of low yield (5600kg/ha) existing paddy varieties like ADT 37, ADT 39 and ADT 45 etc., Heavy incidence of Leaf folder and sheath rot causes 30 % yield loss during <i>Thaladi</i> season 	Paddy variety ADT 58	TNAU 2023	New	10	0.4	28,800	SMS (Agronomy) and SMS (Plant Protection)		5
2	Paddy	Demonstration of Non – lodging paddy variety CO 56 for samba season	 Lodging of crop at harvest stage and flood situations. Low yield with existing variety CR 1009 (5.1t/ha) and BPT-5204 (4.8 t/ha.) Incidence of bacterial leaf blight (8 %), leaf 	Paddy variety CO 56	TNAU, 2023	New	10	0.4	26,000	SMS (Agronomy) and SMS (Plant Protection)		

			spot (12%), false smut (11%) and stem borer (10%)								
3	Cowpea	Demonstration of VBN 4 cowpea as intercrop in Cashewnut under rainfed condition	 Underutilization of land resources Lack of knowledge about intercrop and their varieties on short duration pulses Cultivating low yielding (860kg/ha) existing local cowpea varieties 	VBN 4 Cowpea	TNAU, 2023	New	10	0.4	25,200	SMS (Agronomy) and SMS (Plant Protection)	 5
4	Sorghum	Demonstration of Dual purpose sorghum CO 32	 Cultivating low yielding (860kg/ha) existing local cowpea varieties Cultivating of Single purpose sorghum only for grain purpose. 	CO 32 Dual purpose Sorghum	TNAU, 2020	New	10	0.4	20,500	SMS (Agronomy) and SMS (Agriculture Extension)	
5	Jasmine	Demonstration on Winter Jasmine variety CO 1 for higher yield	Cultivation of low yielding varieties (4500kg/ha), less flower yield during winter season.	Winter Jasmine variety CO 1	TNAU, 2023	New	10	0.4	20,000	SMS (Horticulture) and SMS (Plant Protection)	
6	Banana	Demonstration of banana variety CO 2	• Low yield with existing Poovan variety (21 t/ha.)	Banana variety CO 2	TNAU, 2020	New	10	0.4	16,800	SMS (Horticulture) and SMS	

			•	Incidence of leaf spot disease (32%) and nematode incidence (12%)							(Plant Protection)		
7	Eelephant Foot Yam	Demonstration on Elephant foot yam variety CO 1	•	Cultivation of low yielding varieties (21 t/ha). Incidence of Corm rot and leaf spot disease	Yelephant Foot Yam variety CO 1	TNAU, 2022	New	5	0.4	17,750	SMS (Horticulture) and SMS (Agriculture Extension)		
8	Jackfruit	Demonstration of PLR 3 variety in Jack fruit	•	Low yield (80 fruits/tree) from existing local Jack fruit varieties Low quality fruits with gum and latex. Fruit rot disease incidence (43%)	PLR 3 Jack fruit variety	TNAU, 2021	New	5	0.4	22,000	SMS (Horticulture) and SMS (Agriculture Extension)	2	
9	Maize	Demonstration on Refined IPM Module for Fall Armyworm in Maize	•	Maize is cultivated in about 12500 ha in the district. The damage intensity of Fall armyworm, <i>Spodoptera</i> <i>frugiperda</i> is high in the kharif season with the	Refined IPM Module: 1. Crop rotation 2. Summer ploughing 3.Timely sowing 4. Seed treatment	NIPHM, 2014	New	5	0.4	21,150	SMS (Plant Protection & Agronomy)		

			•	yield loss of 34%. Low yield (15.30 q/ha). Use of chemical pesticides alone ineffective.	5.Spacing 6. Intercrop & Border crop 7. Pheromone trap							
10	Cotton	Demonstration on Integrated Pest and Disease Management in Cotton	•	Cotton is cultivated in about 6750 ha in the district. The damage intensity caused by both pests and diseases leads to yield loss up to 35%. Low yield (3.5 q/ha). Use of chemical pesticides alone is ineffective.	 Seed treatment Soil application Foliar spray Release of natural enemies 	CICR, 2019	New	10	0.4	20,000	SMS (Plant Protection & Agronomy)	
11	Sugarcane	Demonstration on management of early shoot borer in Sugarcane	•	Sugarcane is cultivated in about 3850 ha in the district. The yield loss caused by Early shoot borer recorded up to 28%. Low yield (55 tons/ha). Unable to	 Tricho cards Pheromone traps Border crops Green lacewing 	SBI, 2016	New	5	0.4	14,150	SMS (Plant Protection & Agronomy)	

			perform pesticide application after 6 months								
12	Groundnut	Demonstration on Stem and Pod rot management in Groundnut	 Groundnut is cultivated in about 2500 ha in the district The yield loss caused by <i>Sclerotium rolfsii</i> recorded up to 23%. Low yield (2.5 tons/ha). Use of chemical pesticides alone is ineffective 	 Seed treatment with bio- agents Soil application of neem cake and bio-agent Foliar spray with three different chemicals 	ANGRA U, 2022	New	10	0.4	12,100	SMS (Plant Protection & Agronomy)	
13	Poultry	Demonstration of Nano guard egg tray	Breakage or contamination or spoilage of eggs to the tune of 25 – 30%	Nanoguard egg tray	TANUV AS, 2022	New	10	5 trays for 50 birds	12,000	SMS (AS) and SMS (HS)	
14	Dairy	Demonstration Harit Dhara as a feed supplement in dairy cattle to augment milk yield	 Milch animals are reared under semi intensive system. Current feeding practices of dairy animals resulted in emission of 200 lit of methane per day per cow by belching that led 	Harit Dhara as a feed supplement in dairy cattle @ 500 g/ animal/ day	ICAR - NIANP, 2022	New	10	1 cow	13,500	SMS (AS) and SSH	

			to global warming.								
15	Pangas Catfish	Pangas Catfish (<i>Pangasianodon</i> <i>hypophthalmus</i>) culture in Lined ponds	Fish rearing is the upcoming venture and IMC is the normally grown varieties. But it fetches minimum price in the market and thereby farmers lack interest now a days in fish rearing	Growing catfish in lined ponds with proper feed and disease manageme nt	TNJJFU, 2022	New	3	2500 finger lings	16,200	SMS (AS) and SSH	
16	Vegetables	Demonstration on Domestic Solar Dryer for drying domestic agricultural products	 Farmers cultivates vegetables like Brinjal, Bhendi, Cluster bean, Chilli and have the practice of drying marketable surplus and pest affected vegetables as a value addition practice. Prolonged Sun drying results drying and black colour development in the products results in less price 	Drying vegetables in domestic solar dryer	TNAU, 2023	New	5	1 unit / demo	27,500	SMS (Home Science) and SMS (Horticult ure)	
17	Paddy	Demonstration on	High cost for nursery	Slot	TNAU,	New	5	0.4	13,000	SMS	

		Slot modifications in Paddy drum seeder for wet seeded Rice	raising, Shortage of labor, high seed rate in existing drum seeder	modifications in Paddy drum seeder	2023					(Home Science) and SMS (Agronomy)	
18	Milk	Demonstration of Different Value Added Products from Milk	Dairy farmers selling milk directly to the milk stores where they get only Rs.28 – 35 according to SNF. They also have less knowledge on value addition. Through value addition in milk, they can reap high income.	Providing demonstrati on on milk value addition- Flavoured Milk, Ice Cream, Channa, Ghee and Khoa, Lassi and Dahi, Cheddar Cheese	TANUV AS, 2017	New	5	1 group	20,000	SMS (Home Science) and SMS (Agricultura l extension)	 5
			Total				138		346650		

*New FLD/already approved FLD: 2nd year/3rd year)

4.3. Training Programmes 2023-24

S. No	Thematic area	Crop / Enterprise	Major problem	Linked field intervention (OFT/ FLD)	Training Course Title	No. of Courses	Expected No. of participants	Names of the team members involved
1	Crop Production							
	Integrated Crop	Paddy	• Low yield (4600kg/ha) from	OFT & FLD	ICM in Paddy	2	40	SMS(Ag) SMS(PP)
	management		 existing fine grain varieties under Navarai season. Non availability of high yielding varieties with high market demand. Brown Leaf spot and sheath blight causes 28 % yield loss during Navarai season Lodging of crop at harvest stage and flood situations Low yield with existing variety CR 1009 (5.1t/ha) and BPT-5204 (4.8 t/ha.) 		INM in paddy	1	20	SMS (Ag) SMS (PP)

4.3.1 Details of trainings programmes for Farmers and Farm Women 2023-24

		 Incidence of bacterial leaf blight (8 %), leaf spot (12%), false smut (11 %) and stem borer (10%) Low yield (2600kg/ ha) due to less adoption of complete organic practices in traditional paddy varieties. Lodging character of Karuppu kavuni tend to harvesting difficulties. 					
	Maize	Lack of knowledge on improved cultivation & modified Fall Army worm management practices		ICM in Maize	1	20	SMS(Ag) SMS(AE)
	Sorghum	 Cultivating low yield (860kg/ha) existing local cowpea varieties Cultivating of Single purpose sorghum only for grain purpose. 	FLD	ICM in Dual purpose sorghum	1	20	SMS(Ag) SMS(AE)

Minor millet	 Lack of knowledge on improved cultivation Unaware of importance of minor millets and its value addition 		Hi end technologies in Millet cultivation	1	20	SMS (Ag) SMS (AE)
Groundnut	 Unaware of high yielding variety Non adoption of disease resistant varieties for irrigated condition Reduced yield due to tikka leaf spot (38%) & root rot (14%) Cultivation of low yield (1950kg/ha) bunch type varieties like GJG 3 & local under irrigated condition 	OFT	ICM in Groundnut	2	40	SMS (Ag) SMS (PP)
	 Lack of knowledge on INM practices in Groundnut 		INM in Groundnut	1	20	SMS (Ag) SMS (AE)
Blackgram	• MYMV causes yield loss up to 35 % in existing varieties like T9 and	OFT	ICM in Blackgram	1	20	SMS (Ag) SMS (PP)

		ADT variation					
		• Low yield in the					
		existing variety					
		(ADT 5 & VBN 6)					
		(AD1 5 @ VD1(0)) about 6 1 a/ha					
		against notential					
		vield of 8 5 g/ha					
		• Lack of					
		synchronized					
		maturity in ADT 5					
		Non availability of		Seed production	2	40	$SMS(\Delta g)$
		seed in Season		in Blackgram	2	-0	SMS(Ag)
	Courses	• Understilization	ELD	III Diackgrain	1	15	$\frac{SMS(AE)}{SMS(AE)}$
	Cowpea	• Underutilization	ГLD	iCM in Cowpea	1	15	SMS (Ag)
		of land resources					SMS(AE)
		• Lack of					
		knowledge about					
		intercrop and their					
		varieties on short					
		duration pulses					
		crops					
		 Cultivating low 					
		vield (860kg/ha)					
		existing local					
		cowpea varieties					
	Sunflower	• Lack of knowledge		ICM in	1	15	SMS (Ag)
	Sumower	on sunflower		Sunflower	1	10	SMS(AF)
		cultivation		Sumower			
		tashnisuss in dalta					
		techniques in delta					
		region					
		• Non availability of					
		seed in Season					

Sugarca	 Farmers practicing burning of sugarcane trashes and other agriculture waste in situ that affects soil micro flora Poor recycling of organic resources Reduction in germination and yield loss to the tune 	OFT	Residue management in Sugarcane	1	15	SMS (AE) SMS(Ag)
	 of 10 -15% in the ratoon crop due to burning of trashes Air pollution and leads to global warming Use of heavy seed rate & reduction of 		SSI in Sugarcane	1	20	SMS (Ag) SMS (AF)
	 Vield Unaware of intercrop cultivation Poor soil health due to trash burning 		Intercrop cultivation techniques Crop residue management	1	20	SMS (Ag) SMS (AE) SMS (Ag) SMS (Ag) SMS (AE)
Cotton	• Unawareness of inter and border crops, reddening of leaves and bolls & heavy square and		technologies ICM in cotton	1	20	SMS (Ag) SMS (AE)

			fruit drop • Poor post flood nutrient management causes yield loss • Unawareness of		HDP system with suitable	1	20	SMS (Ag) SMS (AE)
			HDP system of Rainfed cultivation		varieties			
		Fodder	• Scarcity of green fodder in summer season		Fodder cultivation techniques	1	20	SMS (AS) SMS (Ag)
		Green manure	• Non availability of seeds at right time	FLD	Seed production techniques in green manure crops	1	20	SMS (AE) SMS (Ag)
		All crops	• Low income due to cultivation of sole crop		Integrated Farming System	1	20	SMS (Ag) SMS (AS)
		All crops	• Lack of knowledge about soil & water conservation		Techniques on Soil & water conservation	1	20	SMS (Ag) SMS (AE)
		All crops	• Lack of knowledge about micro irrigation Techniques		Micro irrigation Techniques	1	20	SMS (Ag) SMS (AE)
			Total			25	500	
2	Horticulture			0.575		1	20	
		Cashew	 Low yield due to heavy weed incidence. lack of knowledge on cover crops for 	OFT	Assessment of cover crops for weed management in Cashewnut	1	20	SMS (Hor.) SS & H

	 weed management. Low soil fertility and less population of trees (40trees/ha) Tea mosquito bug incidence, stem borer damage. 	gardens			
	• Lack of knowledge on high density planting in Cashew	 High density planting in Cashew	1	20	SMS (Hor.) SS & H
	Lack of Water conservation technology	 Soil and water conservation practices	1	20	SMS (Hor.) SS & H
Drumst	 Low yield from local varieties, low market price during peak season, Occurrence of fruit fly damage (20%) and less market preference 	 Integrated crop management in Drumstick	1	20	SMS (Hor.) SS & H
Brinjal	• Low yield due to fruit and shoot borer incidence, White fly attack, little leaf disease and less market price	 Integrated Crop Management in Brinjal	1	20	SMS (Hor.) SS & H

Banana	• Low net return	FLD	Demonstration	1	20	SMS (Hor.)
	from paddy		of Banana	_		SS & H
	(Rs.35.000/ha in 2		variety CO 2			~~
	crons) Faster rate		functif 00 2			
	of ground water					
	depletion make the					
	farmers to think					
	about alternate					
	about alternate					
	• Low vielding of					
	• Low yleiding of					
	• Incidence of					
	• Incluence of					
	sigatoka lear spot					
	ulsease.					
	• Incluence of Root					
	knot nematode					
<u> (1 '11'</u>	pest.		A (C	1	20	
Chilli	• Low yield due to	OFT	Assessment of	1	20	SMS (Hor.)
	poor nutrition,		foliar nutrition			SS&H
	heavy flower and		for getting			
	fruit drop.		higher yield in			
	• Poor fruit setting		Chilli (green			
	due to nutrient		purpose)			
	deficiency.					
Tuberose	• Lack of awareness	FLD	ICM in	1	20	SMS (Hor.)
	on bulp treatment.		Tuberose			SS&H
	Bulb Cormrot					
	incidence (8-10 %)					
	at initial					
	establishment					
	Severe infestation					
	of nematode (32					

	%) leading to yellowing and drying of plants					
Jasmine	 Low yield of flower during the off season. Low income during off season. Low flower quality. 	OFT	Assessment of off-season flowering in jasmine through nutrient management.	1	20	SMS (Hor.) SMS (PP)
	 Low keeping quality. Low consumer preference. Bud worm pest incidence. 	FLD	Demonstration of winter Jasmine variety CO 1 as alternate for Jasmine in winter.	1	20	SMS (Hor.) SMS (PP)
Elephant Foot Yam	• Low yield from existing local varieties (15t/ha), Corm rot incidence, Heavy leaf spot disease incidence.	FLD	Demonstration of Elephant foot yam variety CO 1	1	20	SMS (Hor.) SS&H
Panthal Vegetables	 Fruit fly incidence, Flower dropping, Cercospora leaf spot incidence 		ICM in Cucurbits	1	20	SMS (Hor.) SS&H
Water melon	 Low yield from local varieties, Occurrence of white fly & thrips, anthracnose 	d	Integrated crop management in Watermelon	1	20	SMS (Hor.) SS&H

	Occurrence of fruit					
	peak season,					
	market price during		fruit variety			
	local varieties, low		of PLK 3 Jack			55 & H
Jack truit	• Low yield from	FLD	Demonstration	1	20	SMS (Hor.)
	disease	FLD	Demonstratio	1	20	
	damage & Rust					
	bark feeder					
	• Fruit fly incidence					
	planting.					
	on high density		Guava			
Guuru	lack of knowledge		Management in	1	20	SS&H
Guava	• Low yield due to		Integrated Crop	1	20	SMS (Hor)
	hug (32%)					
	• Incidence of mealy					
	cassava mosaic					
	susceptible to					
	which is					
	mulluvadi varieties					
	white and					
	existing Thailand		higher yield.			
	 Low yield from 		varieties for			
	cultivation.		of Tapioca			
	on Tapioca		the performance			SS&H
Tapioca	• Lack of knowledge	OFT	Assessment of	1	20	SMS (Hor.)
	caterpillar (28%)					
	Leaf eating					
	disease (24%) and					

3	Plant							
	Protection							
		Paddy	• Severe incidence of rice gall midge, false smut and bacterial leaf blight		Bio control of Pest & Disease Management	1	20	SMS (PP) SMS (AE)
		Maize	 Damage intensity of Fall armyworm, <i>Spodoptera</i> <i>frugiperda</i> is high in the kharif Yield loss of 34%. Low yield (15.30 q/ha). 	FLD	Integrated pest and disease management in Maize	1	20	SMS (PP) SMS (AE)
		Groundnut	• Low yield due to Incidence of sucking pest, leaf eating cater pillar and disease like, root rot, early and late tikka leaf spot	OFT	Integrated pest and disease management in groundnut	2	40	SMS (PP) SMS (AE)
		Chilli	• Low yield due to Fruit borer, fruit rot and flower dropping.	OFT	Integrated pest and disease management in chilli	1	20	SMS (PP) SMS (AE)
		Drumstick	• Low yield due to occurrence of damping off disease, leaf webber and fruit fly damage (20%)		IPM in Drumstick	2	40	SMS (PP) SMS (Hor.) SMS (AE)

Brinjal	• Low yield due to fruit and shoot borer incidence, White fly attack, Hoppers and little leaf disease		IPDM in Brinjal	2	40	SMS (PP) SMS (Hor.) SMS (AE)
Cucurbits	 Fruit fly incidence, Damaged fruits, Flower dropping, Cercospora leaf spot incidence 	OFT	ICM in Cucurbits	1	20	SMS (PP) SMS (AE) SMS (Hor.)
Cotton	• Severe incidence of sucking pest, Severe incidence of reddening& alternaria blight	FLD	Integrated pest and disease management in Cotton	2	40	SMS (PP) SMS (AE)
Sugarcane	• Severe incidence of red rot, white fly, shoots borer, internodes borer and pokka boeng disease	FLD	Integrated pest and disease management in Sugarcane	2	40	SMS (PP) SMS (AE)
Cashew	• Severe incidence of tea mosquito bug and stem borer	FLD	Integrated pest and disease management in Cashew	2	40	SMS (PP) SMS (AE)
Water melon	• Low yield from local varieties, Occurrence of white fly & thrips, anthracnose disease (24%) and Leaf		Integrated crop management in Watermelon	1	20	SMS (PP) SMS (AE) SS & H

			eating caterpillar					
		Major crops	Lack of knowledge on pest control through organic way		Production of pest repellents and spraying methods	2	40	SMS (PP) SMS (AE)
		Tuberose	Nematode damaged plants are stunted, lowering growth & development, where it reduces the flower quality and no. of plucking. Estimated yield loss upto 30 - 45 percentage	OFT	Nematode Management in Tuberose	1	20	SMS (PP) SMS (AE)
	Total					20	400	
4	Home Science							
		Cashew	 Shorter shelf life Large quantities of cashew apple wasted in land without proper usage 		Nutritional importance of Cashew apple, preparation of Cashew apple juice and preservation of Cashew apple iuice	1	20	SMS (HS) SMS (Ho) SMS (AE)
1								

Drumstick	• Poor intake of		Nutritional	1	20	SMS (HS)
	greens in diet &		importance and			SMS (Ho)
	Low market price		dietary			SMS (AE)
	during peak season		requirement of			
			greens in diet			
			and value			
			addition in			
			Drumstick			
Vegetables	 Prolonged sun 	FLD	Solar Dryer for	1	20	SMS (HS)
	drying		drying domestic			SMS (Ho)
	• Appearance of		agriculture			SMS (AE)
	black color and		products			
	foreign particles					
Millet	• Poor intake of		Design and	1	20	SMS (HS)
	millets in diet &		development			SMS (Ag.)
	Non availability of		low cost diet			SMS (AE)
	millet based					
	products in local					
	market			1	20	
	• Mainutrition in		Design and	1	20	SMS(HS)
	school children and		development			SMS (HO)
	pregnancy women		deficiency dist			SMS (AE)
Millot	• Loss consumption	OET	Millet	1	20	CMC (IIC)
Willet	• Less consumption	0F1	substituted	1	20	SMS(HS) $SMS(Ag)$
	• Lock of awaranass		flavored milk			SMS(Ag)
	• Lack Of awareness		Havored IIIIK			SIND (AL)
	millet products					
	miller products					
	Drumstick Vegetables Millet Millet	Drumstick• Poor intake of greens in diet & Low market price during peak seasonVegetables• Prolonged sun drying • Appearance of black color and foreign particlesMillet• Poor intake of millets in diet & Non availability of millet based products in local market• Malnutrition in 	Drumstick • Poor intake of greens in diet & Low market price during peak season Vegetables • Prolonged sun drying • Appearance of black color and foreign particles Millet • Poor intake of millets in diet & Non availability of millet based products in local market • Malnutrition in school children and pregnancy women Millet • Less consumption of millet Millet • Less consumption of millet OFT	Drumstick• Poor intake of greens in diet & Low market price during peak seasonNutritional importance and dietary requirement of greens in diet and value addition in DrumstickVegetables• Prolonged sun drying • Appearance of black color and foreign particlesFLDSolar Dryer for drying domestic agriculture productsMillet• Poor intake of millets in diet & Non availability of millet based products in local marketDesign and development low cost dietMillet• Less consumption of millet • Lack of awareness on value added millet productsOFTMillet	Drumstick • Poor intake of greens in diet & Low market price during peak season Nutritional importance and dietary requirement of greens in diet and value addition in Drumstick Vegetables • Prolonged sun drying FLD Solar Dryer for drying domestic agriculture products Millet • Poor intake of millets in diet & Non availability of millet based products in local market Design and development low cost diet Millet • Less consumption of millet Design and development low cost diet 1 Millet • Less consumption of millet products OFT Millet 1	Drumstick • Poor intake of greens in diet & Low market price during peak season Nutritional importance and dietary requirement of greens in diet and value addition in Drumstick 1 20 Vegetables • Prolonged sun drying • Appearance of black color and foreign particles FLD Solar Dryer for drying domestic agriculture 1 20 Millet • Poor intake of millets in diet & Non availability of millet based products in local market Design and development low cost diet 1 20 Millet • Less consumption of millet Design and development low cost diet 1 20 Millet • Less consumption of millet products OFT Millet 1 20 Millet • Less consumption of millet products OFT Millet 1 20

		Millet	• Lack of knowledge on new fortified millet varieties	OFT	Fortified Ragi varieties suitable for millet value addition and its nutritive value	1	20	SMS (HS) SMS (Ag) SMS (AE)
		Dairy	• Low price in milk	FLD	Value addition in Milk	1	20	SMS (HS) SMS (AS) SMS (AE)
		Blackgram	• Unaware of mechanized threshing		Location specific drudgery reduction technologies	1	20	SMS (HS) SMS (Ag.) SMS (AE)
	.	Total				10	200	
5	Livestock	Dairy	• Lack of knowledge about reproduction management	FLD	Nutritional Management in Dairy	1	20	SMS (AS) SMS (AE)
			• Improper feed management like feeding more rice gruel and avoidance of mineral mixture	FLD & OFT	Importance of mineral mixture and rumen bypass fat	1	20	SMS (AS) SMS (AE)
		Goat	Lack of knowledge on disease management	OFT	Scientific goat rearing	1	20	SMS (AS) SMS (AE)
			• Weight loss, High mortality in kids	FLD	Importance of mineralized salt lick in Goats	1	20	SMS (AS) SMS (AE)
		Poultry	• Low egg production in desi birds	FLD	Native chicken rearing	1	20	SMS (AS) SMS (AE)

	Improper disease management	FLD	Disease management in poultry	1	20	SMS (AS) SMS (AE)
	• Lack of alternate protein source in feed		Use of BSF larvae has alternate feed in poultry	1	20	SMS (AS) SMS (PP)
Fish	• Lack of technical knowledge on fish	FLD	Integrated Fish Rearing	1	20	SMS (AS) SMS (AE)
	rearing		Composite fish culture	1	20	SMS (AS) SMS (AE)
Azolla	 Increased cost of concentrate feed Lack of alternate protein source in feed 	FLD	Azolla cultivation techniques	1	20	SMS (AS) SMS (AE)
Fodder	• Scarcity of green fodder during summer	FLD	Fodder production techniques and 10 cent model	1	20	SMS (AS) SMS (AE)
Quail	• Lack of knowledge on quail rearing		Quail rearing	1	20	SMS (AS) SMS (AE)
Poultry	 Lack of awareness about ethno veterinary practices 	-	Ethno veterinary practices in Poultry	1	20	SMS (AS) SMS (AE)
Piggery	• Lack of awareness about pig rearing		Piggery rearing	1	20	SMS (AS) SMS (AE)
	Total			14	280	

6	Production of I	Inputs at Site						
	C I f	Groundnut, Blackgram & fodder	• Lack of awareness on seed production techniques		Seed Production	1	20	SMS(Ag) SMS (AE)
		Cashew	• Unavailability high yielding planting materials		Planting Material Production	1	20	SMS (Ho) SMS (AE)
	A	All crops	• Unavailability of bio products		Bio – agent Production	1	20	SMS (PP) SMS (AE)
	ľ	All Crops	• Unemployment of Rural youth		Bio – fertilizer production	1	20	SMS (PP) SMS (AE)
	l l	All Crops	• Unawareness about vermicompost uses		Vermicompost production	1	20	SMS(Ag) SMS (AE)
	Ι	Livestock	• High cost of feed		Production of livestock feed & fodder	1	20	SMS (AS) SMS (AE)
	Ν	Mushroom	Low income from landless labours		Mushroom production	1	20	SMS (PP) SMS (AE)
	ŀ	Apiculture	• Unaware about apiculture		Apiculture	1	20	SMS (PP) SMS (AE)
			Total			8	160	
7	Soil Health and	l Fertility		[
		Paddy, Groundnut, Blackgram	Improper nutrient management		Integrated nutrient management	2	40	SMS(Ag.) PA(LT)
		C .			Soil fertility Management	1	20	SMS(Ag.)
	I	Paddy	• Lack of awareness about management of problematic soil		Management of acid & saline soil	1	20	PA(LT)

		All crops	• Low yield due to micro deficiency in crops		Management of micro deficiency in crops	2	40	SMS(Ag.)			
		All crops	• Lack of knowledge on soil & water test		Soil & water sampling techniques	1	20	PA(LT)			
			Total			7	140				
8	Capacity Bui	lding Group Dy	namics								
			Lack of knowledge in management of groups in FIG & FPO		Formation and management of FIG	2	40	SMS (AE) SMS (HS)			
			Uncapable of group maintenance		Leader ship Development	2	40	SMS (AE) SMS (HS)			
			Low income		Entrepreneurship development of farmers	3	60	SMS (AE) SMS (HS)			
			Total			7	140				
	Total 107 2140										

Area of Training	No. of Courses proposed	No. of participants expected (including SC/ST farmers)	SMS involved
Nursery Management of	1	20	SMS (Horti)
Horticulture crops			FM
Training and pruning of orchards	1	20	SMS (Ho) FM
Protected cultivation of vegetable crops	1	20	SMS (Horti) FM
Sericulture	1	20	SMS (PP)
Integrated farming system	1	20	SMS (AE) SMS (Ag)
Seed production	2	40	SMS (Ag) PA (lab)
Production of organic inputs	2	40	SMS (Ag) SMS (PP)
Vermi-culture	1	20	SMS(AE) SMS(Ag)
Mushroom Production	1	20	SMS(PP) SMS(HS)
Bee-keeping	1	20	SMS(PP) SMS(HS)
Value addition	1	20	SMS (HS) SMS (AE)
Post Harvest Technology	1	20	SMS (HS) SMS (HO)
Dairying	1	20	SMS(AS) SMS(HS)
Sheep and goat rearing	1	20	SMS(AS) FM
Rabbit farming	1	20	SMS(AS) SMS(AE)
Poultry production	1	20	SMS(AS) SMS(AE)
Composite fish culture	1	20	SMS(AS) SMS(AE)
Any other (pl. specify) Mechanization	1	20	SMS (HS) SMS (Ag)
Total	20	400	

4.3.2. Details of trainings programmes for Rural Youth 2023-24

4.3.4. Training programmes for Extension Personnel including sponsored training programmes 2023-24

Area of Training	No. of Course proposed	No. of participants expected (including SC/ST farmers)	SMS Involved
Productivity enhancement in field	1	20	SMS (Ag.)
crops			SMS (AE)
Integrated Pest Management	1	20	SMS (PP)
			SMS (AE)
Integrated Nutrient management	2	40	SMS (Ag.)
			SMS (AE)

Integrated farming system	1	20	SMS (Ag.) SMS (AE)
High Density Planting and pruning techniques	1	20	SMS (Hor.) SMS (AE)
Protected cultivation technology	1	20	SMS (Hor.) SMS (AE)
Production and use of organic inputs	2	40	SMS (Ag.) SMS (AE)
Care and maintenance of farm machinery and implements	1	20	SMS (HS) SMS (AE)
Formation and Management of SHGs	1	20	SMS (AE) SMS (HS)
Women and Child care	1	20	SMS (HS) SMS (AE)
Low cost and nutrient efficient diet designing	1	20	SMS (HS) SMS (AE)
Management in farm animals	1	20	SMS (AS) SMS (AE)
Livestock feed and fodder production	1	20	SMS (AS) SMS (AE)
Total	15	300	

5. Targets for mandated activities for the year 2023-24

S.No.	Activities	Target (2023-24)
1	On- farm trials (No. of technologies)	17
1.	On- farm trials (No. of locations)	20
2	Frontline Demonstrations (No.)	18
2.	Frontline Demonstrations (No. of locations)	20
	Trainings for Farmers and Farm Women (No. of programmes)	107
3	Trainings for Farmers and Farm Women (Participants) Nos.	2140
5.	Trainings for Rural Youth (No. of programmes)	20
	Trainings for Rural Youth (Participants (No.)	400
4	Trainings of Extension Personnel (No. of programmes.)	15
4.	Trainings of Extension Personnel (Participants in Nos.)	300
5	No. of Extension Activities (No. of activities)	853
5.	Participants in Extension activities (in lakh)	38175
6.	Production of seed (in quintal) (Crop-wise)	
	Blackgram - VBN 8	10 q.
	COFS 29	2 q.
7.	Production of planting materials (Nos.) (Crop-wise)	
	Guava layers	1000 Nos.
	Chinese potato tuber	50 q.
	Coconut seedling	2000 Nos.
	Dragon fruit saplings	200 Nos.
	Banana suckers	500 Nos.
	Forest tree saplings (Teak)	2500 Nos.
	Cashew grafts	1000 Nos.
	Mango grafts	500 Nos.
	Jack grafts	500 Nos.
	Ornamental plants	500 Nos.

	Live-stock strains and finger lings produced (in lakh)	
	Goat – Tellichery	20 Nos.
0	Goat – Salem black	20 Nos.
8.	Cattle	5 Nos.
	Earth worm	20 kg.
	Pro duction of bio inputs and other inputs (List with unit)	
	Bacillus subtilus	750 kg.
	Trichoderma viride	750 kg.
	Azophos	200 kg.
	Rhizhophos	200 kg.
	VAM	500 kg.
	Panchakavya	2000 lit.
	Azolla	500 kg.
	Vermicompost	5 t.
	Predators	2000 cards
0	Kisan Mobile Advisory (KMA) (No. of messages)	24
9.	Kisan Mobile Advisory (KMA) (No. of farmers)	31130
	Soil testing using Mobile Soil Testing Kit (No. of samples)	500
10.	Soil testing in laboratory (No. of samples)	
	Water sample Testing (samples in No.)	500
11.	Soil Health Card using Mobile Soil Testing Kit data (No. of Cards)	500
12.	Soil Health Card using Laboratory data (No. of Cards)	1000

6. Special Activities (NFSM, Skill Development, IFS, EDP, FFS, NFDB, SERP etc.) 2023-24

Activity or Programme	Seasons (Kharif/Rabi/Summer) / Physical assets created	Area (Ha)	Demos (No.)	Budget (Rs. lakhs)	Team members involved
NFSM Pulses					
Blackgram	Rabi	30	75	2.70	SMS(Ag) SMS(PP) SMS(AE)
NFSM Oilseeds	s				
Groundnut	Rabi	30	75	3.60	SMS (Ag) SMS (PP) SMS (AE)
Sesame	Summer	10	25	0.52	SMS (Ag) SMS (PP) SMS (AE)
Sunflower	Kharif	10	25	0.645	SMS (Ag) SMS (PP) SMS (AE)
IFS		2.5	6	0.2916	SMS (AE) SMS (Ag) SMS (AS)
EDP			1 SHG	0.15	SMS (AS) SMS(AE)
FFS	Rabi	1	1	0.30	SMS (Ag) SMS(AE)

Activity or Programme	Program duration	Funding agency	Physical details (no. of programmes, participants, area etc.)	Financial outlay (Rs. lakh)	Team members involved
Agri based S&T backstopping towards socio- economic improvement of SC people of Ariyalur District, Tamil Nadu (Sanctioned)	3 years	Department of Science and Technology, New Delhi	1000	71.30	Dr.G.Alagukannan DrA.Rajkala Mr.M.AShokkumar
Mushroom Production Techniques & Seed production in Pulses (Sanctioned)	1 week	MANAGE	20	0.84	Dr.G.Alagukannan Mr.M.Ashokkumar Dr.A.Rajkala
Tribal development through on-farm and non farm ventures	3 years	NABARD	100 ST families	65.00	Dr.G.Alagukannan Dr.A.Rajkala S.Shobana
Publication on hi-end technologies in animal husbandry	 T/	NABARD	1000 books	1.00	Dr.G.Alagukannna Mr.Thirumalaivasan Mr.S.Prabu
technologies in animal husbandry	Te	otal		138.14	Mr.S.Prabu

7. Externally funded Activities (continuing / anticipated during 2023-24)

8. Date of SAC meeting conducted during 2022-23:

Date of submission of proceedings of SAC meeting held in 2022-23: 02.02.2023

9. Proposed date/month of SAC Meeting to be held in 2023-24

State	Designated slot	Proposed month/week
Tamil Nadu		December last week

10. Revolving fund status (2022-23) & expected revenue (2023-24) (Rs. in Lakhs):

Opening balance as on 1 st April 2022	Receipts during 2022-23	Expenditure during 2022-23	Closing balance as on 31 st March 2023	Expected revenue (2023-24)
9.12	26.29	25.37	10.05	19.75

11. Pro	posed	Budget	2023-24
---------	-------	--------	---------

S.No	Particulars	Proposed BE 2023-24 (Rs lakhs) (Indicative)
A	RECURRING ITEMS	a
1	Pay & Allowances	184.42
2	Travelling Allowances	2.50
а	Field activities & programmes	
b	Training programmes	
3	Contingencies	
	Office Contingencies	
a	Stationery, telephone, stamps and other expenditure on office running	3.50
b	POL, repair of vehicles, tractor and equipment including hiring of vehicle	3.50
4	Technical Programmes	
a	Rs.150/- per person per day towards food and refreshments for KVK training programmes for farmers/extension personnel	3.21
b	Teaching materials for training and demonstrations	1.07
с	Training of extension functionaries	0.45
d	Publications of extension literature for farmers and extension functionaries	1.00
e	Honorarium for trainers	0.20
f	On Farm Testing (Problem Oriented)	1.63
g	Front Line Demonstration on major crops including oilseeds & pulses, fodder crops, animal husbandry, fisheries, etc.,	2.3095
h	Kisan Meals /Farmers Fair (at KVK farm)	1.00
i	Library (Purchase of newspaper, journals, etc.,)	0.10
j	Maintenance of farm	1.00
k	Value chain management of FPO/Integrated Farming System (IFS)/Farmers Field School (FFS)	1.00
1	Soil Health Card (SHC)	0.63
m	Website/mobile app etc.	0.50
n	Extension Activity	1.00
0	SCSP Component	3.65
	Total of Contingencies	18.7495
	Total of Recurring Items	212.67
B	NON-RECURRING ITEMS:	
a	Works(Building Maintenance(20L), Compound wall (5L) &Bore well(10L))	35.00
b	Vehicle (Jeep/Tractor/2 Wheeler)	
с	Furniture	2.00
d	Establishment of Organic Recourse Centre	15.00
e	SCSP Component (Creation of Physical assets)	7.00
	Total of Non-Recurring Items	59.00
	GRAND TOTAL (A+B)	271.67

Forwarded

[DEE/Chairman] ICAK-Krishi Vigyan Kendra (CREED) Cholamadevi. Ariyalur District

6 Signature of the Senior Scientist and Head of the KVK ICAR - Erishi Vigyan Kendra (CREED) Cholamadevi, Ariyalur District.

Verified [Nodal Officer (ATARI)]

٠

Approved [Director (ATARI)